Low default modelling: a comparison of techniques based on a real Brazilian corporate portfolio.

Guilherme Fernandes and Carlos A. Rocha *

April 8th, 2011

Abstract: Over the past decade modelling expected loss has been a subject of interest to financial institutions. As defined by BIS Basel II accord, the probability of default (PD) is a parameter of the expected loss of a portfolio. The methodologies for modelling the PD on a retail credit portfolio are well explored [1997: Hand and Henley]. However, financial institutions must deal with low default situations, for instance corporate portfolio. Plutto&Tasche [2006] have shown a conservative methodology for estimating the PD based on a previous defined rating. This paper explores and compares some techniques to develop a PD rating on a low default scenario. First we revisited some models that would fit in this situation, such as classical logistic regression, Bayesian logistic regression and limited logistic regression. Artificial oversampling via SMOTE [2002: Chawla et al.] was conducted to result on a balanced data and the state dependent correction [1989: McCullagh and Nelder] was then applied to extract bias from estimators. Those four techniques were used in the analysis of a real dataset based on corporate companies from Brazil. There were a total of 1,327 enterprises of which 50 defaulted on a 12 month outcome window. Comparisons evaluated relied on ROC curve, Gini coefficient and Kolmogorov-Smirnov statistics. Those three statistics were analyzed after a bootstrap simulation. As results, limited logistic regression presented slightly higher K-S statistics throughout the simulation. This model returned the highest K-S statistics over 50% of the re-samplings. However, when Gini coefficient is analyzed classical logistic regression performed better. Over 42% of all re-samplings pointed towards this model as the best fit.

Key-words: Low default models, Bayesian logistic regression, state dependent correction, limited logistic regression, corporate statistical modelling.

*Serasa Experian, Al. Quinimuras, 187, São Paulo, SP – Brazil.

E-mail: guilherme.fernandes@br.experian.com, carlos.rocha@br.experian.com
1. Introduction

Banks and financial institutions play an important role in the economy as money multiplier. This implies accelerated economic increase and creates a virtuous cycle of borrowing, generating wealth, payment with interest and borrowing again. Nevertheless, there is a systematic risk inherent to credit. The credit risk, better known due to BIS Basel Accord, has been a subject of great interest to financial system entities.

Since the loss of a portfolio can be considered a random variable conditional to some risk factors, it became a major research field to model those factors. As a random variable, one can calculate the expectation of the loss function of a portfolio. The expected loss (EL) can be understood as the most likely cost to a credit portfolio and so it sets the inferior limit to a safe reserve. As defined in BIS New Basel Accord (2001), the expected loss (EL) can be expressed as the product of the probability of default (PD), exposure at default (EAD) and loss given default (LGD).

There are many academic researches over those three factors, especially PD. When it comes to a retail portfolio with plenty of default and observations, all usual methods for modelling can be applied and evaluated. However, financial institutions also deal with low default portfolios (LDP). The Basel Accord does not set a rule to classify a portfolio as a LDP, however FSA [1] suggests three broad categories. One of those is set as “no or insufficient data (…) available (…) to derive PD estimates”.

There are a number of papers that deals with PD bounds estimation, such as Pluto [2], however most of them are based on previous rating grade. This paper explores and compares some techniques to estimate a statistical model and an input to the rating grade.

First we discuss the well-known classical logistic regression, one of the main approaches to model PD of a non-LDP. Cramer [3] introduced a different technique, the limited logistic regression, which is based on adding a parameter to the logistic model to set an upper bound to the output probability. A Bayesian logistic regression was also considered here using a non informative priori.

Since low event is the main source of concerning when modelling a LDP, an oversampling technique could set a possible direction. Among many computational algorithms to inflate the number of defaults, Chawla et al. [4] suggested the SMOTE
technique, a method that artificially creates new default observations based on the pre-
existing ones. According to McCullagh [5] a logistic regression estimated from this new
dataset would present biased parameters, however the state-dependent correction solves
the bias.

A Brazilian corporate credit portfolio was the basis of comparison to the present
paper. A total of 1,327 companies were observed during a ten-year window and a one-
year outcome time horizon to determine default. This portfolio presented a 3.7% default
rate and 50 defaulted companies were detected. In spite of a rather high default rate, the
number of defaults causes a modelling difficulty.

As comparison measures we used the area under the ROC (AUROC) curve [6] and the
Kolmogorov-Smirnov statistic (KS) [7]. Uncertainty arises due to the low
number of defaults in the sample and hence, a bootstrap simulation [8] was run to
minimize this problem. The results of the simulation showed that Bayesian logistic
regression presented a high level of performance with a lower bootstrap variance.

2. Methodologies

On credit risk models one of the most commonly used techniques is logistic
regression because of its properties, such as, parameters that are easily interpreted and
linear combination of risk factors. As Hand and Henley [9] pointed out: “(...) there is
no overall ‘best’ method”. Hence, our comparison is not an ultimate list for modelling
techniques that should be compared. Discriminant analysis, neural networks, time-
varying models and, why not, linear regression are only some plausible alternatives [9].
We cover primarily logistic regression like models.

a. Classical logistic regression

Logistic regression is part of a widely general family of models known as
generalized linear models [5]. The model is stated from a dichotomous response
variable. Let Y_i be the observation of the default event over the outcome window where:
The probability modelled is a non-linear link function to a linear combination of the risk drivers (vector of endogenous variables \(x_i \)). Therefore, the logistic regression is described as follows.

\[
P[Y_i = 1|X_i = x_i] = \pi(x_i') = \frac{1}{1 + e^{x_i'\beta}}
\] (2)

The equation (2) means that the probability of a credit lender honours the debt is estimated conditionally on the endogenous variables \(x_i \). The main reason of logistic regression being chosen as the credit risk scoring methodology is the direct interpretation of the parameters. In logistic regression \(e^{\beta} \) represents the odds ratio. Also the direct probability of an event is more tangible idea to non-literate on statistical modelling.

Risk factors effect over the probability of default (PD) is expressed by the \(\beta \) parameters vector. The estimation method of these parameters in logistic regression is the maximum likelihood estimation (MLE). The likelihood function is given by the joint distribution of all observations conditioned to \(X_i \) variables, stated in (3).

\[
L(\beta; x_i) = \prod_{i=1}^{n} f(y_i|x_i) = \prod_{i=1}^{n} \left(\pi(x_i) \right)^{y_i} \left(1 - \pi(x_i) \right)^{1-y_i}
\] (3)

The maximum of \(L(\beta; x_i) \) is also maximum of \(l(\beta; x_i) = \ln(L(\beta; x_i)) \).

\[
l(\beta; x_i) = \sum_{i=1}^{n} \left[y_i \ln \left(\frac{1}{1 + e^{-x_i'\beta}} \right) + (1 - y_i) \ln \left(1 - \frac{1}{1 + e^{-x_i'\beta}} \right) \right]
\] (4)

After solving the system obtained from \(\frac{\partial l(\beta; x_i)}{\partial \beta} = 0 \), the estimates \(\hat{\beta} \) are the MLE. Hypothesis testing of those estimates is based on Wald’s statistic [10] and is given by:

\[
W = \left(\hat{\beta} \text{SE}(\hat{\beta}) \right)^2
\] (5)

The \(W \) statistic has normal distribution under \(H_0 \), so the regular test is applied.

The logistic regression perhaps, may present low quality estimates for the \(\beta \) vector [3]. Cramer [3] suggests a slight modification for that model adding one
parameter. This model was called limited logistic regression and is stated in the following section.

b. Limited logistic regression

The limited logistic regression presents an extra parameter that sets an upper bound for the probability of default and is stated in (6).

\[
P[Y_i = 1|X_i = x_i] = \pi^L(x_i') = \omega \frac{1}{1 + \exp(-x_i'\beta)}
\] \hspace{1cm} (6)

In equation (6) the \(Y_i, x_i'\) and \(\beta\) have similar meaning as in classical logistic regression, however \(\omega\) is the additional parameter that bounds the probability \((0 < \omega < 1)\). The probability distribution of \(Y_i\) is once again \(\text{Binomial}(\pi^L(x_i'))\) and, therefore, the likelihood function is similar to (3). The log-likelihood function is presented in (7) and the only difference from (4) is because of \(\omega\).

\[
l(\beta, \omega; x_i) = \sum_{i=1}^{n} \left[y_i \ln \left(\omega \frac{1}{1 + \exp(-x_i'\beta)} \right) + (1 - y_i) \ln \left(1 - \omega \frac{1}{1 + \exp(-x_i'\beta)} \right) \right]
\] \hspace{1cm} (7)

From equation (4) the system of equations \(\frac{\partial l(\beta, \omega; x_i)}{\partial \beta} = 0\) is found and it leads to a non-linear system on the parameters. To estimate both parameters \(\beta\) and \(\omega\), an iterative optimization method is needed and Newton-Raphson’s algorithm [11] was run. The hypothesis testing for \(\hat{\beta}\) is also based on Wald’s statistics.

c. Bayesian logistic regression

In statistical modelling, Bayesian inference incorporates the level of uncertainty towards the parameters. This uncertainty is reduced after data information is taken into account. The prior distribution holds the uncertainty before data and the posterior distribution is the parameters marginal distribution after data incorporation. The equation (8) presents the relationship stated.

\[
p(\theta | x) = \frac{p(x|\theta) \cdot p(\theta)}{\int p(x|\theta) \cdot p(\theta) d\theta}
\] \hspace{1cm} (8)
Where $p(\theta)$ is the prior distribution of the parameter of interest, $p(x|\theta)$ is the likelihood function and represents the data information added and, at last, $p(\theta|x)$ is the posterior distribution.

Equation (8) is based on the Bayes theorem and to solve this equation a series of simulation methods have been developed, one of the most widely used is based on Gibbs sampling [11]. Simulation diagnosis is needed and some useful tools are:

1. Time series graphics for simulation steps to showing stability and low variability,
2. Autocorrelation graphics [12] to assure non-correlation,

The three diagnosis tools have been used in this paper.

d. Artificial oversampling via SMOTE

As pointed by Cramér [3], most techniques loose performance and result on low quality estimates modelling a rare event. Chawla et al [4] suggest a computational method for artificially creating new observations and balance both events, default and non default.

The synthetic minority oversampling technique, or SMOTE as it was called, randomly creates observations from existing defaults. The randomness is embedded in the selection of two existing observations and again to simulate a synthetic point inner to the hypercube they define. The steps to simulate new observations are described as follows.

Illustration 1 represents a data set with two possible covariates, X1 and X2, and the observed individuals with those characteristics. Notice that black dots stands for default and white dots for non default. The first step is to select only the minority class, Illustration 2.
The next step is represented in Illustration 3, where a pair of observations is randomly sampled. Their coordinates define a semi-plan and within it the synthetic observation is, once again randomly, created. Illustration 4 shows the results of the SMOTE simulation after several iterations.

Based on the new data set at Illustration 4 the model is developed. Although it solves the problem of low data, the lack of real proportion of default / non default introduces bias to the estimates. This problem is called state-dependent sample and McCullagh and Nelder [5] present a solution.

e. State-dependent correction

The SMOTE method increases the minority class to a reasonable rate of default/non default. However, as mentioned, it introduces a bias to the parameters estimation and the problem is called state-dependent sample. The equation (9) states proposition in mathematical terms.

\[
P(Y_i = 1|i \in S) \neq P(Y_i = 1)
\] (9)
Where $Y_i = 1$ means default state for the i^{th} observation and S is the sample for modelling. After the SMOTE is run the resulting data set is a state-dependent sample and the bias of estimation process is known. Equation (10) sets log-likelihood function under state-dependent sample.

$$
\ln(L(\beta|Y)) = -\sum_{i=1}^{n} w_i \ln(1 + \exp((1 - 2Y_i)x_i'\beta))
$$

(10)

Where w_i is the weight of the observation given by $w_i = \left(\frac{\tau}{\bar{y}}\right) Y_i + \left(\frac{1-\tau}{1-\bar{y}}\right) (1 - Y_i)$, with τ is the real proportion of defaults and \bar{y} is the sample proportion of defaults. Both covariates vector and parameters vector are represented as in (3). Although the estimates are still biased, the correction presented in McCullagh and Nelder [5] solves this problem. Equation (11) state the bias.

$$
bias(\hat{\beta}) = (X'WX)^{-1}X'W(\xi)
$$

(11)

Where $\xi = 0.5(diag[X(X'WX)^{-1}X'] \cdot [(1 - (\tau/\bar{y}))\pi - (\tau/\bar{y})])$; with W is the weight diagonal matrix, 1 is a ones-vector and π is the vector of estimated probabilities for each observation. At last, the estimated parameters are obtained from $\tilde{\beta} = \hat{\beta} - bias(\hat{\beta})$. According to King and Zeng [18] $\tilde{\beta}_i$ is consistent for all $i \neq 0$, in other words, every parameters but the intercept. They suggest a simple correction that is elucidated in Equation (12).

$$
\tilde{\beta}_0^* = \tilde{\beta}_0 - \ln\left[\left(\frac{1-\tau}{\tau}\right)\left(\frac{\bar{y}}{1-\bar{y}}\right)\right]
$$

(12)

f. Performance measures

In order to compare and evaluate the four methods for modelling LDP, two main measures were calculated: Gini coefficient and Kolmogorov-Smirnov statistic. The first one was introduced by Corrado Gini [14] and originally used to measure inequality. Commonly found in sociology to quantify wealth distribution, can also scale discriminatory power of a PD model.

Gini’s coefficient is based on the Lorenz curve and it is calculated as a ratio of areas on Illustration 5. The line that delimits areas A and B is the Lorenz curve and it is
plotted from the pairs of accumulated defaulted and non-defaulted observations for all possible cut-offs on the ordered PD estimates.

Illustration 5

Gini’s coefficient is calculated as \(G = A/(A + B) \). The higher is \(G \), the better discriminatory power the model presents. Therefore, if \(G = 1 \) then the model perfectly separates defaulted and non-defaulted. Notice that Gini’s coefficient has a one-to-one link to the area under the ROC curve.

The second performance measure used is the Kolmogorov-Smirnov statistic [15], from now on KS. It is a non parametric statistic meant to compare empirical distributions and is used to compare default and non-default PD estimates distributions. Equation (13) presents \(D_{n,n'} \) as the KS statistic.

\[
D_{n,n'} = \max_x |F_{1,n}(x) - F_{2,n'}(x)|
\]

Equation (13)

Notice that the KS statistic measures the maximum distance between empirical accumulated distributions of both groups, while Gini’s coefficient evaluates the whole curve. Although they usually points out to the same direction, the conclusions might be divergent.

g. Bootstrap simulation

In 1979 Bradley Efron [8] introduced the bootstrap simulation. The algorithm has been of great value in various statistical analysis situations, from estimation of
parameters to model validation. Here we resort to bootstrap as part of the model evaluation analysis. Since performance measures are susceptible to high variability in LDP, bootstrap has been a tool to bypass possible over-fitting besides measuring impact of a few defaults.

The bootstrap algorithm is based on resampling the data set with reposition criteria \(k \) times. Every resample must have the same size as the original data. Bootstrapping relies on independent observations and perhaps it is a reasonable assumption even in LDP.

At last we obtained several \(KS_{(k)} \) statistics and \(Gini_{(k)} \) coefficients. The analysis is based on the distribution of both measures and the model with the highest average statistic on both maybe chosen if variability is smaller.

3. Results
 a. Data description

 The data set used was a real corporate portfolio, which implies in company revenues over US$ 130 million (R$ 200 million). The modelling period is from 2003 through 2008, resulting on 1.327 different companies. Default definition is based on market default for a one-year performance window, such criterions resulted in 50 defaults over time.

 Although a 3.76% default rate is not a rare event situation, the fifty defaulters brings up the problem of a LDP. The main difficulty is found in estimating parameters avoiding over fitting risk.

 The period used for modelling process is punctuated by several characteristics, most of them unique in Brazilian history. During this period the index [16] of variation wages on a year-over-year basis, raised from -15% in 2003 to +4%. Credit over gross national product ratio [16] also grew from 22% in 2003 to 36% in 2008. Nevertheless credit delinquency [16] ranged from 3.5% to 5.0%. The propitious economic environment induces a low default scenario and the challenge for modelling process is established. The Graph 1 shows this scenario.
Graph 1: Default rate over months

It is valuable to notice from Graph 1 that in the majority of months no defaults were observed. Even the moving average (bold line) presents sharp edges. The crisis period is observed after the fourth quarter of 2007 and here note that the default status is evaluated under a twelve months window.

b. Approaches comparison

The analysis of the data set previously described began with a default correlation overview through several covariates. Information value (IV) [17] was primarily calculated for all eligible variables. IV is based on Weight of Evidence (WoE) adjusted by cases percent in each class. Equation (14) presents the calculation need to obtain IV for a continuous form. Equation (15) presents IV for discrete form.

\[
IV_C = \int (f_D - f_{ND}) \ln \left(\frac{f_D}{f_{ND}} \right) dx \quad (14)
\]

\[
IV_D = \sum (DistDefault - DistNonDefault) \cdot WoE \quad (15)
\]

Where \(WoE = \ln(\text{DistDefault}/\text{DistNonDefault})\). A variable with higher IV has better discriminating power. Notice that \(IV_D\) is not sensible for default rate inversion, thus a closer analysis is needed towards discrete variables.
Variables available in the data set refer to information about: credit demand, historical bureau delinquency, short-long indebtedness, suppliers’ info and balance sheet accounts. After data cleaning, the 120 variables available for modelling only 54 presented IV higher than 0.3.

Multicollinearity is an issue that may lead to over-fitting and biased parameters estimation. As a mean to solve it, each pair of covariates with Spearman correlation coefficient higher than 0.5 were submitted to an IV comparison and the lowest one excluded from the model. There were 29 variables after such analysis and none of them had IV lower than 0.5.

The first model estimated was classical logistic regression and a sort of stepwise procedure was conducted. The priority of variables tried on the model was defined by the Information Value of each. The final model included the following variables: V1) total negative bureau statements included over the past 30 days, V2) ratio of short term debt over current assets, V3) number of banking past due contracts, V4) days since last negative statement paid, V5) maximum of negative statements active at the same time, V6) total enquiries over the past 15 days, and at last V7) number of negative statement paid over the past 6 months. The Table 1 presents estimates and p-value for each parameter.

Table 1: Parameters estimates and their hypothesis tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>P-value</th>
<th>PD Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-3.6228</td>
<td>0.5241</td>
<td>47.7843</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Ratio of short term debt over current assets higher than 25</td>
<td>0.8451</td>
<td>0.3132</td>
<td>7.2799</td>
<td>0.007</td>
<td>0.015</td>
</tr>
<tr>
<td>Total of negative bureau statements included over the past 30 days higher than 8</td>
<td>1.0701</td>
<td>0.4509</td>
<td>5.6311</td>
<td>0.0176</td>
<td>0.016</td>
</tr>
<tr>
<td>Number of banking past due contracts (Max of 4)</td>
<td>0.2638</td>
<td>0.0954</td>
<td>7.6552</td>
<td>0.0057</td>
<td>0.015</td>
</tr>
<tr>
<td>Days since last negative statement paid (Max of 200 days) - square root transformation</td>
<td>-0.1744</td>
<td>0.0503</td>
<td>12.0377</td>
<td>0.0005</td>
<td>0.058</td>
</tr>
<tr>
<td>Maximum of negative statements active at the same time (Max of 120) - square root transformation</td>
<td>0.1713</td>
<td>0.0571</td>
<td>8.9923</td>
<td>0.0027</td>
<td>0.010</td>
</tr>
<tr>
<td>Total number of enquiries over the past 15 days (Max of 50)</td>
<td>0.0320</td>
<td>0.012</td>
<td>7.1265</td>
<td>0.0076</td>
<td>0.011</td>
</tr>
<tr>
<td>Total number of negative statement paid over the past 6 months (max of 45) - square root transformation</td>
<td>-0.4637</td>
<td>0.128</td>
<td>13.1203</td>
<td>0.0003</td>
<td>0.064</td>
</tr>
</tbody>
</table>

The last columns of Table 1 also compares the discriminatory power of each variable in the model by evaluating the PD change when varying each input values in a ceteris paribus view held equal to their mean. Here notice that variable V7 (Negative statement paid over the past 6 months) presents the highest difference in PD, followed
by V4 (Days since last negative statement was paid) and V5 (Maximum number of statements active at the same time). The variable V6 (Total enquiries over the past 15 days) adds a meaningful discriminatory power increment.

The second model run was Bayesian logistic regression. As priori distribution all parameters were associated to \(\text{Normal}(\mu=0;\sigma^2=1,000,000) \), in other words, a non informative priori. Notice that a similar to stepwise variables selection algorithm was run. Gibbs sampler was used to solve MCMC simulation, with a burn-in equals to 2,000, a total simulation of 30,000 and thinning equals to 5. The Illustration 6 presents simulation chain for each parameter.

Illustration 6: Simulation diagnosis per parameter

The Geweke test is a commonly used test for simulation convergence. Table 2 shows that the eight parameters converged. Also posterior autocorrelations were low and none of them significant.

Table 2: Geweke test na posterior autocorrelation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geweke Diagnostics</th>
<th>Posterior autocorrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z statistic</td>
<td>p-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.1091</td>
<td>0.9132</td>
</tr>
<tr>
<td>V1 total negative bureau statements included over the past 30 days</td>
<td>0.9004</td>
<td>0.3679</td>
</tr>
<tr>
<td>V2 ratio of short term debt over current assets</td>
<td>0.5958</td>
<td>0.5513</td>
</tr>
<tr>
<td>V3 number of banking past due contracts</td>
<td>-1.1536</td>
<td>0.2487</td>
</tr>
<tr>
<td>V4 days since last negative statement paid</td>
<td>0.3323</td>
<td>0.7396</td>
</tr>
<tr>
<td>V5 maximum of negative statements active at the same time</td>
<td>-1.0035</td>
<td>0.3156</td>
</tr>
<tr>
<td>V6 total enquiries over the past 15 days</td>
<td>0.7021</td>
<td>0.4826</td>
</tr>
<tr>
<td>V7 number of negative statement paid over the past 6 months</td>
<td>0.2836</td>
<td>0.7767</td>
</tr>
</tbody>
</table>

The Table 3 presents the parameters of each posterior distribution. The final model was most similar to classical logistic regression, as expected. Note that no probability interval with a 5% alpha includes zero.
Table 3: Posterior distributions and equal-tail interval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Equal-Tail Interval (alpha 5%)</th>
<th>PD Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-3.6974</td>
<td>0.5298</td>
<td>-4.7736 -2.7080</td>
<td></td>
</tr>
<tr>
<td>Ratio of short term debt over current assets higher than 25</td>
<td>0.8651</td>
<td>0.3178</td>
<td>0.2553 1.5130</td>
<td>0.013 0.031 2.333</td>
</tr>
<tr>
<td>Total of negative bureau statements included over the past 30 days higher than 8</td>
<td>1.0901</td>
<td>0.4585</td>
<td>0.1821 1.9617</td>
<td>0.016 0.047 2.882</td>
</tr>
<tr>
<td>Number of banking past due contracts (Max of 4)</td>
<td>0.2686</td>
<td>0.0975</td>
<td>0.0791 0.4596</td>
<td>0.014 0.039 2.853</td>
</tr>
<tr>
<td>Days since last negative statement paid (Max of 200 days) - square root transformation</td>
<td>-0.1793</td>
<td>0.0515</td>
<td>-0.2893 -0.0814</td>
<td>0.054 0.005 11.992</td>
</tr>
<tr>
<td>Maximum of negative statements active at the same time (Max of 120) - square root transformation</td>
<td>0.1727</td>
<td>0.0583</td>
<td>0.0557 0.2837</td>
<td>0.009 0.055 6.323</td>
</tr>
<tr>
<td>Total number of enquiries over the past 15 days (Max of 50)</td>
<td>0.0324</td>
<td>0.0120</td>
<td>0.0090 0.0564</td>
<td>0.009 0.046 4.866</td>
</tr>
<tr>
<td>Total number of negative statement paid over the past 6 months (max of 45) - square root transformation</td>
<td>-0.4718</td>
<td>0.1312</td>
<td>-0.7332 -0.2214</td>
<td>0.059 0.003 22.343</td>
</tr>
</tbody>
</table>

The last columns in Table 3 compare the discriminatory power of each variable in the Bayesian model. The PD change was evaluated by varying its input values while others variables are held fixed and equal to each mean. Once again, variable V7 (Negative statement paid over the past 6 months) presents the highest difference in PD, followed by V4 (Days since last negative statement was paid) and V5 (Maximum number of statements active at the same time). Variable V6 (Enquiries over the past 15 days) presented one of the widest PD range. The parameters found are slightly different from the ones estimated in classical logistic regression, although it raised the odds in PD range.

The third methodology presented was limited logistic regression. In order to estimate the parameters of this model, the log-likelihood function (7) was defined and maximized using the Newton-Raphson algorithm [11]. Table 4 presents estimated parameters and p-value ($H_0: \beta=0$). Once again a sort of stepwise selection method was applied and the same variables entered the model. Note that w here represents the upper bound of the PD.
Table 4: Parameters estimates and hypothesis tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>P-value</th>
<th>PD Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Odds</td>
</tr>
<tr>
<td>w</td>
<td>0.146</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Ratio of short term debt over current assets higher than 25</td>
<td>0.969</td>
<td>0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>Total of negative bureau statements included over the past 30 days higher than 8</td>
<td>2.127</td>
<td>0.018</td>
<td>0.017</td>
</tr>
<tr>
<td>Number of banking past due contracts (Max of 4)</td>
<td>0.303</td>
<td>0.006</td>
<td>0.015</td>
</tr>
<tr>
<td>Days since last negative statement paid (Max of 200 days) - square root transformation</td>
<td>-0.334</td>
<td>0.001</td>
<td>0.084</td>
</tr>
<tr>
<td>Maximum of negative statements active at the same time (Max of 120) - square root transformation</td>
<td>0.336</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>Total number of enquiries over the past 15 days (Max of 50)</td>
<td>0.014</td>
<td>0.008</td>
<td>0.016</td>
</tr>
<tr>
<td>Total number of negative statement paid over the past 6 months (max of 45) - square root transformation</td>
<td>-0.862</td>
<td>0.001</td>
<td>0.089</td>
</tr>
</tbody>
</table>

The last columns in Table 4 compare the discriminatory power of each variable in the limited logistic model. The PD change was evaluated by varying its input values while others variables are held fixed and equal to each mean. Once more variable V7 (Negative statement paid over the past 6 months) presents the highest difference in PD, followed by V4 (Days since last negative statement was paid) and V5 (Maximum number of statements active at the same time). Also the limited logistic regression raised the odds in PD range considerably.

At last, the SMOTE oversampling method for artificial data creation was set to generate a database of 1,277 non-defaulted (all original ones) and 430 defaulted (50 original observations and 380 synthetic data). The logistic regression estimation occurs under the weighted maximum likelihood function where the weights are presented in Equation (16).

$$w_{i} = \begin{cases}
0.1496, & \text{if } i = 1 \\
1.2863, & \text{if } i = 0
\end{cases}$$

(16)

The Table 5 presents parameters estimates, their hypothesis test with weight matrix and the state-dependent corrected parameters after bias calculation (11). Notice that the correction of the intercept has a slightly different formula (12). Most parameters were almost bias-free prior to state-dependent correction.
The last columns in Table 5 compare the discriminatory power of each variable in the limited logistic model. Once more, the PD change was evaluated by varying its input values while others variables are held fixed and equal to each mean. Variable V7 (Negative statement paid over the past 6 months) presents the highest difference in PD, followed closely by V4 (Days since last negative statement was paid) and furthermore by V5 (Maximum number of statements active at the same time).

In order to compare the four methodologies a bootstrap simulation was run with 10,000 re-samples. Gini coefficient and KS statistic were calculated in each re-sample. At last, two boxplots completed the comparison, on for each performance measure.

Table 5: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>P-value</th>
<th>Bias</th>
<th>Corrected estimate</th>
<th>PD Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.9824</td>
<td><.0001</td>
<td>2.1523</td>
<td>-3.1347</td>
<td></td>
</tr>
<tr>
<td>Ratio of short term debt over current assets higher than 25</td>
<td>1.0975</td>
<td><.0001</td>
<td>0.0000</td>
<td>1.0975</td>
<td>0.015</td>
</tr>
<tr>
<td>Total of negative bureau statements included over the past 30 days higher than 8</td>
<td>0.7722</td>
<td><.0001</td>
<td>0.0012</td>
<td>0.7710</td>
<td>0.020</td>
</tr>
<tr>
<td>Number of banking past due contracts (Max of 4)</td>
<td>0.2789</td>
<td><.0001</td>
<td>0.0002</td>
<td>0.2787</td>
<td>0.016</td>
</tr>
<tr>
<td>Days since last negative statement paid (Max of 200 days) - square root transformation</td>
<td>-0.1772</td>
<td><.0001</td>
<td>-0.0001</td>
<td>-0.1771</td>
<td>0.064</td>
</tr>
<tr>
<td>Maximum of negative statements active at the same time (Max of 120) - square root transformation</td>
<td>0.1421</td>
<td><.0001</td>
<td>0.0001</td>
<td>0.1420</td>
<td>0.012</td>
</tr>
<tr>
<td>Total number of negative statement paid over the past 6 months (max of 48) - square root transformation</td>
<td>-0.3782</td>
<td><.0001</td>
<td>-0.0002</td>
<td>-0.3780</td>
<td>0.056</td>
</tr>
<tr>
<td>Total number of distinct companies that enquired over the past 15 days was higher than 35</td>
<td>0.7395</td>
<td><.0001</td>
<td>0.0000</td>
<td>0.7395</td>
<td>0.020</td>
</tr>
</tbody>
</table>

![Boxplot for KS statistic](Image)
At overall view to Graphs 2 and 3 suggests that state-dependent correction after SMOTE oversampling presents lower median Gini coefficient and median KS statistic. The limited logistic regression presents the highest median KS statistic, however Gini coefficient is four points lower.

When comparing the median Gini and median KS for both Bayesian and classical logistic regression they presented similar results. Nevertheless, KS interquartile range was, by far, larger in the classical model. Apparently the MCMC simulation provides a higher robustness to the posterior parameters in the Bayesian model.

The default rate assortment along score quantiles also was found. Graph 4 shows that when one splits the score into 15 ranges of equal proportion of observations, the default rate in each class (bold line) rises in a rather assorted direction. The inverted accumulated default rate (dashed line) presents a monotonically non-decreasing pattern.
4. Conclusion

Banks were always interested in risk measurement and after Basel accord its importance increased substantially. Among risk parameters, PD occupies a central role. In a retail portfolio no greater difficulties have been found to estimate PD models, however when it comes to low default portfolios estimation issues arise. Pluto and Tasche [2] introduced one of the most used methods for assessing PD. Nevertheless, their method starts from a pre-existing rating grade. This paper illustrated and compared four alternatives to obtain such a rating model.

Classical logistic regression, limited logistic regression, Bayesian logistic regression and oversampling technique combined with state-dependent correction were compared in a Brazilian LDP. The estimated parameters in final models were alike and slight differences in estimates were found. However, after a bootstrap simulation of Gini coefficient and KS statistic, the Bayesian model presented high performance with lower variance.

Although limited logistic regression presented the best KS statistic, the top performance was not repeated in Gini coefficient. SMOTE combined with state-dependent correction provided a lower performance in both measures. Classical logistic regression presented similar performance to Bayesian model, but the KS statistic variance in bootstrap simulation was high and first quartile of classical model was further lower than in the Bayesian model.
Another important aspect in PD modelling is the assortment of default rate throughout score ranges. Bayesian model presented a rather increasing trend as score would rise. For those reasons Bayesian logistic regression was considered the best option for this situation.

An informative priori Bayesian model would be a subject of further studies. Specialist information and external bureau odds ratio may be a way of assessing an informative priori distribution.

5. Reference

