Fitting a distribution to Value-at-Risk and Expected Shortfall, with an application to covered bonds

Dirk Tasche

Bank of England – Prudential Regulation Authority

dirk.tasche@gmx.net

Credit Scoring and Credit Control XIV, Edinburgh
August 26, 2015

1The opinions expressed in this presentation are those of the author and do not necessarily reflect views of the Bank of England.
Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
The problem

- Covered bonds are an important funding instruments for many banks.
- They are considered very safe investments.
- **No loss** due to missed payments to bondholders was ever observed.
- **No historical data** on covered bonds defaults and related losses are available.
- Estimating expected loss for covered bonds is not straightforward.
Essential features of covered bonds

- The bond is issued by – or bondholders otherwise have full recourse to – a credit institution which is subject to public supervision and regulation;
- Bondholders have a claim against a cover pool of financial assets in priority to the unsecured creditors of the credit institution;
- The credit institution has the ongoing obligation to maintain sufficient assets in the cover pool to satisfy the claims of covered bondholders at all times;
- The obligations of the credit institution in respect of the cover pool are supervised by public or other independent bodies.

Source: The European Covered Bond Council (http://ecbc.hypo.org)
A structural model for covered bonds

Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
Two assets approach

- **Bond issuer’s asset values (random variables):**
 - X is value of assets in cover pool (collateral for covered bonds).
 - Y is value of issuer’s other assets.

- **Bond issuer’s debts (constants):**
 - C is nominal value (principal) of covered bonds.
 - S is nominal value of senior unsecured debt.
 - U is nominal value of subordinated unsecured debt.

- **Double recourse:** In case of issuer’s default,
 - covered bonds are served by proceeds from cover pool;
 - if cover pool proceeds are insufficient bond holders have a claim against the issuer’s other assets, ranking pari passu with the holders of senior unsecured debt.

- L_C, L_S, L_U denote **loss rates** for covered bonds, senior unsecured debt and subordinated debt respectively.
A structural model for covered bonds

Three loss events

▸ Issuer defaults, total assets sufficient for senior debt:
\[C + S \leq X + Y < C + S + U \]

\[\Rightarrow \quad L_U = 1 - \frac{X + Y - (C + S)}{U}, \quad L_C = L_S = 0. \quad (1a) \]

▸ Issuer defaults, total assets insufficient for senior debt, cover pool sufficient for covered bonds:
\[X + Y < C + S, \quad X \geq C \]

\[\Rightarrow \quad L_C = 0, \quad L_S = 1 - \frac{X + Y - C}{S}, \quad L_U = 1. \quad (1b) \]

▸ Issuer defaults, total assets insufficient for senior debt, cover pool insufficient for covered bonds:
\[X + Y < C + S, \quad X < C \]

\[\Rightarrow \quad L_C = \frac{(C - X)(S + C - X - Y)}{(S + C - X)C}, \quad L_S = \frac{S + C - X - Y}{S + C - X}, \quad L_U = 1. \quad (1c) \]
Observations

- Covered bonds holders only suffer loss if
 - the issuer defaults \((X + Y < C + S + U)\) and
 - the total assets value falls below the amount of senior debt \((X + Y < C + S)\) and
 - the value of the cover pool assets falls below the nominal value of the bonds \((X < C)\).

- Issuer’s PD (probability of default) \(P[X + Y < C + S + U]\) is bounded from above by

\[
P[X + Y < C + S + U] \leq P[X < C + S + U]. \tag{2}
\]

- The bound does not depend on the distribution of \(Y\) (value of issuer’s other assets).
Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
Specifying the asset distributions

- Lognormal distribution is the most convenient choice of an asset value distribution.

- **Assumptions:**
 - Both the cover pool value X and the value of the issuer’s other assets Y are lognormally distributed.
 - X and Y are linked by a normal copula.

- **Parametrisation:**

\[
X = \exp(\mu + \sigma \xi), \quad Y = \exp(\nu + \tau \eta), \quad (3)
\]

with $\mu, \nu \in \mathbb{R}$, $\sigma, \tau > 0$ and $(\xi, \eta) \sim \mathcal{N}\left((0, 0), \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right)$ for some $\rho \in [0, 1]$.

- **Drawback:** $X + Y$ is **not** lognormal.
Derive formulae by conditioning on \(X \) or \(Y \).

Case \(\varrho < 1 \):

\[
CE[L_C] = \int_{-\infty}^{\log(C) - \mu / \sigma} \left(C - e^{\mu + \sigma X} \right) \varphi(X) \Phi \left(\frac{\log(C + S - e^{\mu + \sigma X}) - (\nu + \tau \varrho X)}{\tau \sqrt{1 - \varrho^2}} \right) dx
\]

\[
- e^{\nu + \tau^2 (1 - \varrho^2) / 2} \int_{-\infty}^{\log(C) - \mu / \sigma} \frac{\left(C - e^{\mu + \sigma X} \right) e^{\tau \varrho X}}{C + S - e^{\mu + \sigma X}} \varphi(X) \Phi \left(\frac{\log(C + S - e^{\mu + \sigma X}) - (\nu + \tau \varrho X)}{\tau \sqrt{1 - \varrho^2}} - \tau \sqrt{1 - \varrho^2} \right) dx. \tag{4}
\]
Formulae for covered bonds expected loss II

- Consider also **strongest dependence** between X and Y, i.e. comonotonicity.

- Comonotonic case, $\varrho = 1$:

$$
CE[L_C] = \min \left(\frac{\log(C) - \mu}{\sigma}, x(C+S) \right) \int_{-\infty}^{\varphi(x)} \frac{(C - e^{\mu + \sigma x})(C+S - e^{\mu + \sigma x} - e^{\nu + \tau x})}{C+S - e^{\mu + \sigma x}} \, dx.
$$

(5a)

- For $a > 0$, $x(a)$ denotes the unique solution of

$$
a = e^{\mu + \sigma x} + e^{\nu + \tau x}.
$$

(5b)
Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
The comonotonic case

- So far, a complete solution is known only in the comonotonic case.
- **Assumption:** We know
 - the issuer’s PD_{issuer} and expected loss EL_{issuer}, and
 - the PD_{cover} and EL_{cover} of the cover pool.
- Fitting the distribution (3) of X to PD_{cover} and EL_{cover} is equivalent to fitting a lognormal distribution to given Value-at-Risk and Expected Shortfall.
- A unique lognormal distribution for X can be fitted as long as we have $0 < EL_{\text{cover}} < PD_{\text{cover}} < 1$.
Fitting the cover pool asset value distribution

- Denote by \(\nu \) the **level of over-collateralisation** of the covered bonds.
- First, determine \(\sigma \) in (3) for the distribution of \(X \) by solving

 \[
 0 = \Phi(\Phi^{-1}(PD_{cover}) - \sigma) - (PD_{cover} - EL_{cover}) \exp(\sigma \Phi^{-1}(PD_{cover}) - \sigma^2/2).
 \]
 (6a)

- Then calculate \(\mu \):

 \[
 \mu = \log((1 + \nu) C) - \sigma \Phi^{-1}(PD_{cover}),
 \]
 (6b)

- Factor \(1 + \nu \) reflects the fact that PD and EL refer to the entire pool including the assets for over-collateralisation.
Fitting the distribution of the value of other assets I

In the comonotonic case, we need to solve this equation system for parameters ν and τ for Y (see (5b) for $x(a)$):

$$PD_{issuer} = \Phi(x(C + S + U)),$$ \hspace{1cm} (7a)

$$(C + S + U) \cdot PD_{issuer} (1 - LGD_{issuer})$$

$$= e^{\mu + \sigma^2/2} \Phi(x(C + S + U) - \sigma)$$

$$+ e^{\nu + \tau^2/2} \Phi(x(C + S + U) - \tau).$$ \hspace{1cm} (7b)

Due to (2) and other dependence issues, there is not always a solution (ν, τ) of (7a), (7b).
Proposition. Assume that $\mu \in \mathbb{R}$ and $\sigma > 0$ are fixed. Then there is a solution (ν, τ) of (7a), (7b) if and only if

$$0 < PD_{\text{issuer}} < \Phi \left(\frac{\log(C+S+U)-\mu}{\sigma} \right) \quad \text{and} \quad (8a)$$

$$PD_{\text{issuer}} \frac{e^{\mu+\sigma} \Phi^{-1}(PD_{\text{issuer}}) - e^{\mu+\sigma^2/2} \Phi\left(\Phi^{-1}(PD_{\text{issuer}}) - \sigma\right)}{PD_{\text{issuer}} (C+S+U)} < LGD_{\text{issuer}}$$

$$< 1 - \frac{e^{\mu+\sigma^2/2} \Phi\left(\Phi^{-1}(PD_{\text{issuer}}) - \sigma\right)}{PD_{\text{issuer}} (C+S+U)}. \quad (8b)$$

If there is a solution (ν, τ) of (7a), (7b) it is unique.

Next slide: Illustration for $PD_{\text{cover}} = 0.05\%$, $LGD_{\text{cover}} = 30\%$ (small range) and $PD_{\text{cover}} = 0.5\%$, $LGD_{\text{cover}} = 50\%$ (large range).
Illustration of feasible PD and LGD range for issuer
Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
We have presented an approach to the calculation of expected loss for covered bonds, based on a structural approach with two asset values.

A number of open issues remains to be solved:

- How to estimate the asset correlation?
- How to define ’default’ of the cover pool? As ’losses exceed loss reserve’?
- How to better reflect different horizons (one year for issuer’s default, – say – ten years covered bonds maturity)?
- What to do in the case where there is no solution for a combination of issuer’s PD and LGD as well as cover pool PD and LGD?
Outline

Introduction

A structural model for covered bonds

Lognormal asset distributions

Calibration of the model

Concluding remarks

References
