

FICO.

First-to-Saturate Principle for Consistent Explanations of Neural Networks

Krzysztof Nalborski Lead Scientist Al Innovation and Development FICO

FICO

- 1. Neural networks are highly predictive but inherently unexplainable.
- 2. Hidden layer(s) is a key predictive component of a neural network, but fully understating its properties and typically dense connections is very challenging.
 - 3. FICO's latest invention tackles the problem of explainability with two key features: a novel first -to-saturate principle and a construction of interpretable hidden nodes.

Neural Networks: highly predictive but very challenging to explain

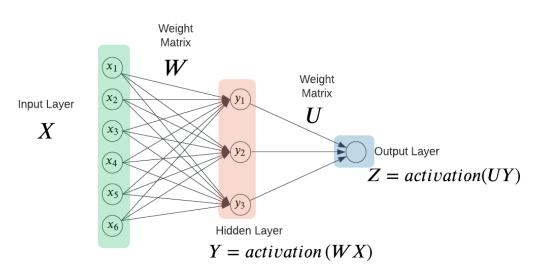
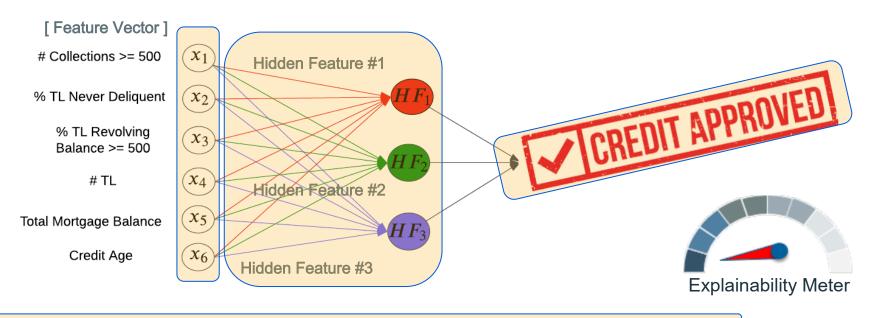


Figure 1. A simple fully connected neural network. Hidden and output layer bias vectors not included for simplification.

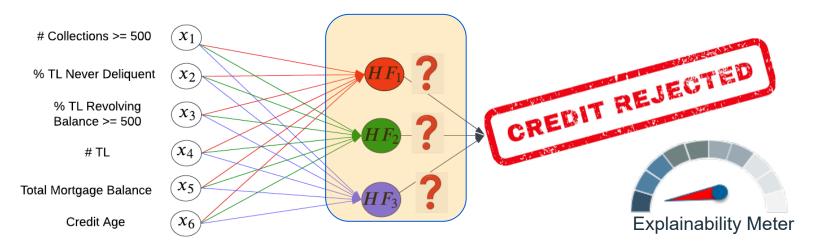
- Commercially built by FICO for over 30 years to be used in Al-based decisioning platforms in numerous industries including banking, auto or telco.
- They are typically fully connected containing an input layer, one or more hidden layers, and an output layer.
- They are highly predictive but very challenging to explain.
- Hidden layer(s) is the key component of a neural network enabling to model complex and non-linear input data relationships— understanding and deciphering these relationships have been a focal ExplainableAl (xAl) research area at FICOin the recent years.

Neural Networks: magical and highly predictive hidden features



- An Input Layer takes domain specific and engineered features and passes them to the rest of the network.
- A Hidden Layer (one or more) learns Hidden (Latent) Features which are key predictive components enabling a network to discover complex and non-linear relationships between the input features.
- An Output Layer combines Hidden (Latent) Features to produce a score to be used for decisioning.

Regulatory Requirements



- Equal Credit Opportunity Act in the United States and General Data Protection Regulation (GDPR) in Europe require creditors to provide applicants who are denied credit with explanations regarding their rejected application.
- **"We regret to inform you that our AI system rejected your application"** ...will not be considered as a valid explanation.
- For credit risk decisions and to shift from the use of scorecards to neural networks, we need to be able to understand hidden features.

Explainable AI (xAI): current approaches and challenges

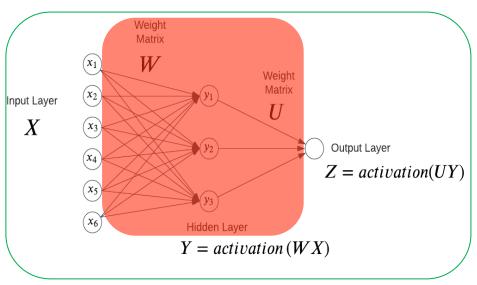


Figure 1. A simple fully connected neural network. Hidden and output layer bias vectors not included for simplification.

Questionable:

- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley Additive exPlanations (Shapley)

- LIME: Injectnoisy data around point being investigated, score, and train a new linear model. Local decision boundary is investigated.
- Shapley: Calculate Shapley values for all features to make local explanations.
 - Both approaches DO NOT consider internals of the original model.

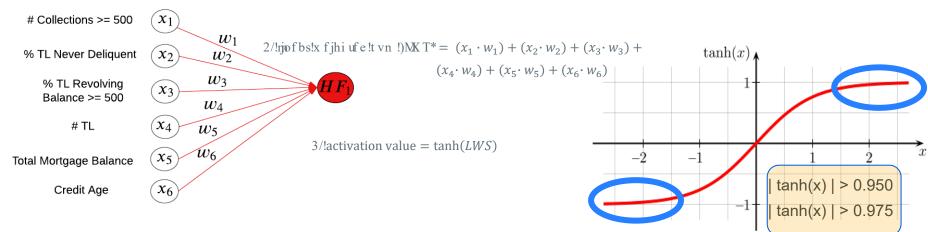
Innovative:

First-to-Saturate (FTS)

 Understanding a neural network's internals to determine which input features drive each (hidden) node into saturation.

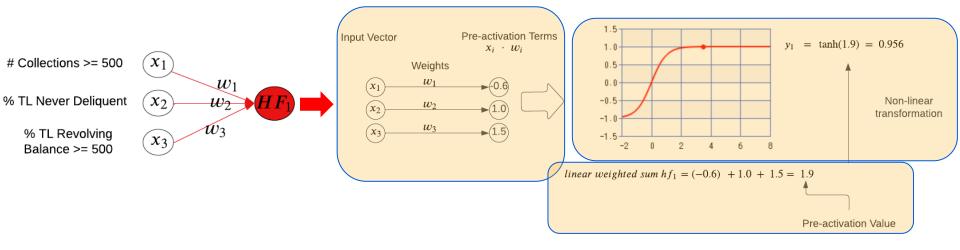
First-to-Saturate (FTS) Principle: what is a hidden node saturation?

- A Solvation function range For example, close to 1 or 1 for a hyper Province and the state of the state of
- Saturated regions, with appropriate training, can help to identify the strongest nonlinear relationships representative of each relationship representative representative of each relationship representative representat
- LWS can kee increasing linearly, but with hyperbolic tangent activation function, its value will be notinearly transformed to a bounded interval
 - Which are the most important input-weight combinations and how many of them do we need to push a node into a saturated region? What does saturation mean numerically?



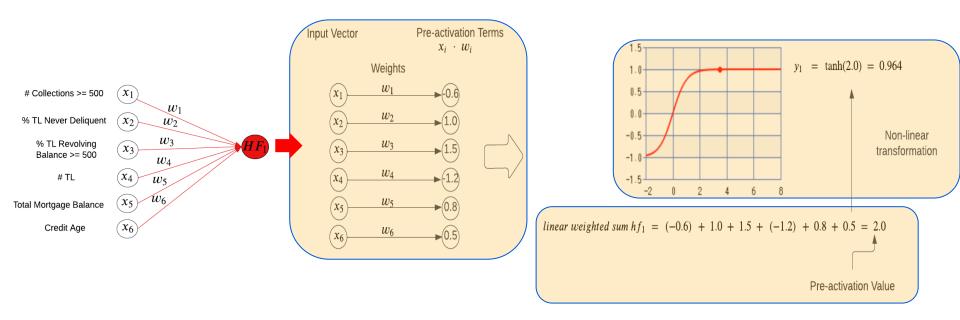
First-to-Saturate (FTS) Principle: computational paths to saturation > 0.95

• With 3 input features value of hidden feature HF₁ is 0.956 which is very close to the upper bound of the activation function.

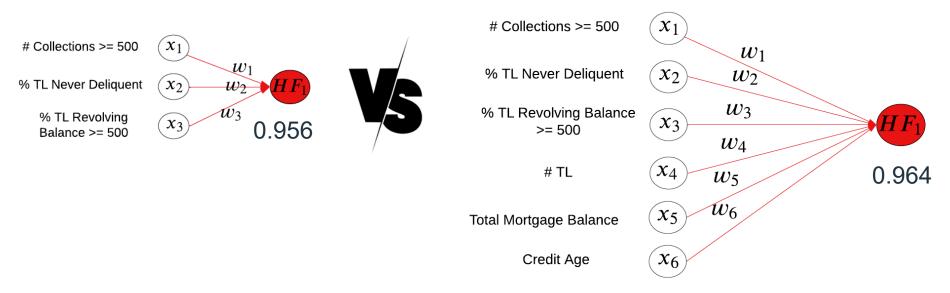


First-to-Saturate (FTS) Principle: computational paths to saturation > 0.95

With 6 input features, which is 3 more than before value of hidden feature HF₁ is 0.964. From reaching the saturation threshold perspective, this value is already beyond the point regarded as necessary the network to learn hidden representation of the strongest input-weight connections incoming into hidden feature HF₁.



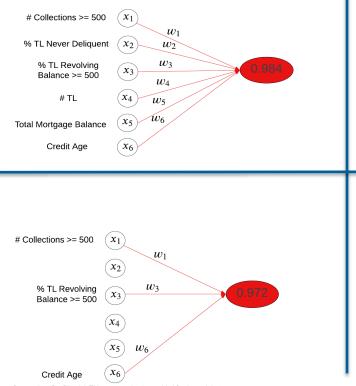
First-to-Saturate (FTS) Principle: computational paths to saturation > 0.95

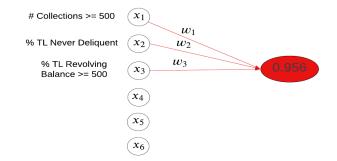


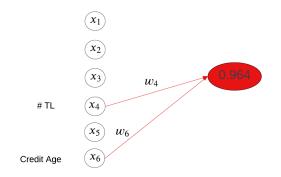
- Adding 3 extra features increaseshidden feature's HF information value, but even without these extra features, value of this hidden feature is already in the saturated region and close to the upper bound of the activation function.
- Saturation (without unnecessary oversaturation) is needed to learn new complex relationships d reduces the network to a binary state to map inputs to their corresponding labels.
- The new features (x₄, x₅, x₆) only marginally contribute to the node's final value and introducædditional complexity and unnecessary ambiguity related to understanding and explaining theidden feature HF₁ that the neural network learns through training.

First-to-Saturate (FTS) Principle: saturation modes

• Hidden node HF₁ can have numerous and nondeterministic computational paths that lead to different saturation modes during training and often only a subset of features is needed to reach saturatiorFTS algorithm can deterministically find that subset and rank order the features.

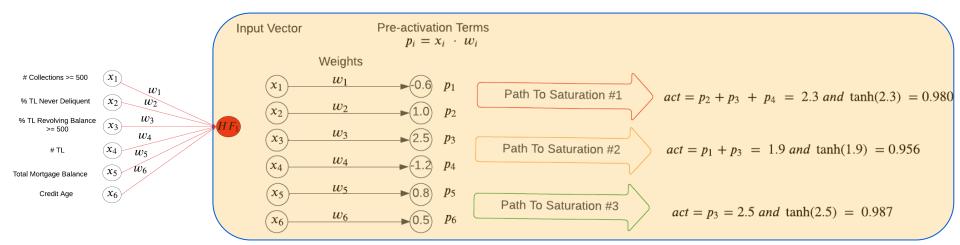






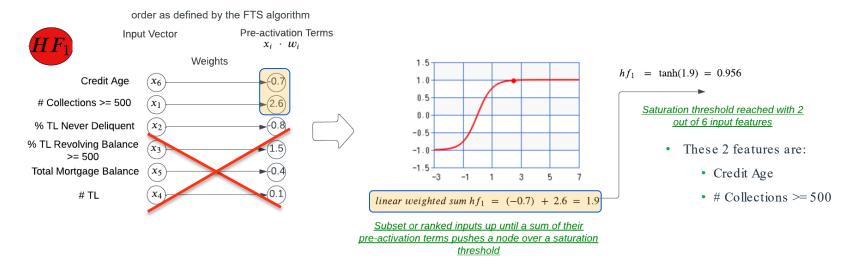
First-to-Saturate (FTS) Principle: finding ranked features that push a node into saturation

- FTS algorithmalgorithm allows to define a saturation threshold. For example, a hidden node's absolute activation value > 0.95:
 - $|y_i| > 0.95$



- Based on magnitude-sorted by their absolute value pre-activation terms, for the entire training data corpus and for each hidden node, FTS algorithm finds most statistically likely lists of ranked features that can push a node into saturation
- For example, pre-activation terms of **features** $\{x_6, x_1, x_2\}$ in this order are most likely to push hidden feature HF₁ into saturation because they led to 95%+ of all saturations during training.

First-to-Saturate (FTS) Principle: inference



- Sum of pre-activation terms associated with features x_0 and x_1 already reaches our saturation threshold
- The remaining pre-activation terms, for example the negative-0.8 contribution coming from x₂, is not included in calculation of the activation value according to the FTS principle. Some input weight connections may even be completely masked to simplify a network's structure if they are found to never lead to saturation.

First-to-Saturate (FTS) Principle: network training and creation of interpretable hidden nodes

Densely connected network with 144 unique features and 15 hidden

During network training with the FTS principle, [(0, [0,1,2,3,4,5] weights corresponding to the most (2, [0,1,2,3,4,5,..., 143]), hidden node at index 0 and all (3, [0,1,2,3,4,5,...,143]),(4, [0, 154.3, 41)ms, 164.7 That a subset of ranked input (5, [0, features minimally sufficient for a hidden node (6, [0, 12 saturate, 143]), incoming connections from (7, [0,1,2,3,4,5,...,143]),all 144 input (8, [0,1,2,3,4,5,...,143]),(9, [0, T] alming ... with 3 DFTS simblifies all all 4 network's (10, lostructure, hibitely, layers weight what hix is

(11, [Onlasked to , drlly]) allow feature combinations

(12, [Oalreact, 5proved 3th), be refevent based on their

(13, [0;dr/k/m/g,5of.hildele]), node's into saturation.

(14, [0,1,2,3,4,5,...,143])

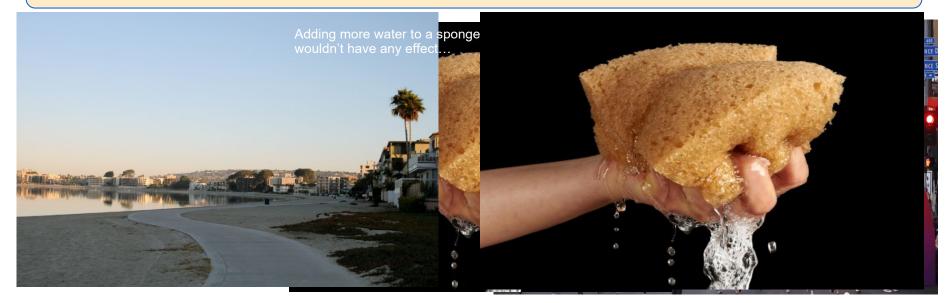
Sparsely connected network trained with the FTS principle

[(0, [14, 69, 71, 34, 48, 37, 26]), • hidden node at index 0, (1, [37, 100, 81, 22, 88, 120, 34]),(2,[119,14,56,23,56,77,23]),(3,[113,44,136,23,48,66,44]),(4, [116, 38, 31, 119, 35, 91, 111]), remaining hidden nodes (5,[117,76,31,14,67,78,65]),(6, [121, 56, 7, 138, 12, 24, 77]),(7, [41, 100, 83, 99, 144, 108]),(8, [114, 129, 107, 52, 100, 104),(9, [140, 22, 4, 8, 42, 127, 88, 91]),(10, [69, 14, 56, 62, 120, 105]),(11, [119, 44, 31, 37, 76, 44, 12]),(12, [136, 4, 21, 117, 80, 130, 1]),(13, [83, 14, 0, 11, 53, 108, 22]),(14,[123,100,32,89,98,90])

only connects with features at certain indices; same for the

First-to-Saturate (FTS) Principle: a different take on saturation

saturation simply means filling a thing or a place with "something" to an extent where there is enough of that "something" and more of that "something" would have no additional effect on that thing or that place ...



- What saturates Krzysztof's level of endorphins/ what makes Krzysztof happy while running?
 - Location (by the beach, around a lake, in a canyon).
 - Time of the day (early morning).
 - Style of running (progression run, intervals).

3 factors (and their combinations) to put Krzysztof in one of the happiness related **saturation MODES** while running.

- 1. Neural networks are highly predictive but inherently unexplainable.
- 2. Hidden layer(s) is a key predictive component of a neural network, but fully understating its properties and typically dense connections is very challenging.
 - 3. FICO's latest invention tackles the problem of explainability with two key features: a novel first -to-saturate principle and a construction of interpretable hidden nodes.

THANK YOU!

krzysztofnalborski@fico.com

