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1. Neural networks are highly predictive but inherently unexplainable.

2. Hidden layer(s) is a key predictive component of a neural network,
but fully understating its properties and typically dense connections
is very challenging.

3. FICO’s latest invention tackles the problem of explainability with
two key features: a novel first -to -saturate principle and a
construction of interpretable hidden nodes.
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Neural Networks: highly predictive but very challenging to explain
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Figure 1. A simple fully connected neural network. Hidden and output layer bias vectors
not included for simplification.
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Commercially built by FICO for over 30 years to be
used in Al-based decisioning platforms in humerous
industries including banking, auto or telco.

They are typically fully connected containing an input
layer, one or more hidden layers, and an output layer.

They are highly predictive but very challenging to
explain.

Hidden layer(s) is the key component of a neural
network enabling to model complex and non-linear
input data relationships— understanding and
deciphering these relationships have been a focal
ExplainableAl (xAl) researcharea at FICQOin the recent
years.



Neural Networks: magical and highly predictive hidden features
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. [ An Input Layertakes domain specific and engineeredfeatures and passes them to the rest of the network. ]

| A Hidden Layer (one or more) learns Hidden (Latent) Features which are key predictive components enabling a network to
discover complex and nondinearrelationships between the input features.

. [ An OutputLayercombines Hidden (Latent) Featuresto produce a score to be used for decisioning. ]
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Regulatory Requirements
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+ Equal Credit Opportunity Act in the United States and GeneralData Protection Regulation (GDPR)in Europe require creditors to
provide applicants who are denied credit with explanations regarding their rejected application.

* | “Weregret to inform you that our Al system rejected your application” ...will not be
considered as a valid explanation. Beacaneal

say so ...

| For credit risk decisions and to shift from the use of scorecards to neural
networks, we need to be able to understand hidden features.
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Explainable Al ( xAl): current approaches and challenges
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Figure 1. A simple fully connected neural network. Hidden and output layer bias
vectors not included for simplification.

Y = activation(W X)
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+ Shapley Additive
exPlanations
(Shapley)

an

Innovative:
First-to-Saturate (FTS)

— /

investigated.

y: Calculate Shapley values

r all features to make local
explanations.

* Both approaches DO NOT

consider internals of the original
model.

}

» Understanding a neural network’s
internals to determine which input
features drive each (hidden) node

into saturation.




First-to - Saturate (FTS) Principle: what is a hidden node saturation?
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First-to - Saturate (FTS) Principle: computational paths to saturation > 0.95

+ With 3 input features value of hidden feature HF; is 0.956 which is very close to the upper bound of the activation function.
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First-to - Saturate (FTS) Principle: computational paths to saturation > 0.95

+ With 6 input features, which is 3 more than beforevalue ofhidden feature HF; is 0.964. From reaching the saturation threshold
perspective, this valueis already beyond the point regarded as necessaifpr the network to learn hidden representation of the
strongest input-weight connections incoming into hidden feature HF; .
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First-to - Saturate (FTS) Principle: computational paths to saturation > 0.95

# Collections >= 500

w1

% TL Never Deliquent @\ ws

% TL Revolving Balance @ w3

>= 500 —
Wy )
X4 ws 0.964
We

% TL Never Deliguent

% TL Revolving
Balance >= 500

#TL

Total Mortgage Balance

Credit Age

+ Adding 3 extra features increaseshidden feature’s HF; information value, but even without these extra features, value of this
hidden feature is already in the saturated regiorand close to the upper bound of the activation function.

- Saturation (without unnecessary oversaturation) is needed to learn new complex relationshipsd reduces the network to a binary
state to map inputs to their corresponding labels.

+ The new features (x,, X5, %) only marginally contribute to the node’s final value and introduceadditional complexity and

unnecessary ambiguity related to understanding and explaining thedden feature HF,; that the neural network learns through
training.
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First-to - Saturate (FTS) Principle: saturation modes

+ Hidden node HF,; can have numerous and nordeterministic computational paths that lead to different saturation modesduring
training and often only a subset of features is needed to reach saturatiarF TS algorithm can deterministically find that subsetind
rank orderthe features.
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First-to - Saturate (FTS) Principle: finding ranked features that push a node into saturation

+ FTS algorithmalgorithm allows to define a saturation threshold. For example, a hidden node’s absolute activation value > 0.95:
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- (Based on magnitude-sorted by their absolute value pre-activation terms, for the entire training data corpus and for each hidden
node, FTS algorithm finds most statistically likely lists of ranked features that can push a node into saturation
-

. (For example, pre-activation terms of features {x;, X, %} in this orderare most likely to push hidden feature HF, into saturation
\because they led to 95%+ of all saturations during training.
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First-to - Saturate (FTS) Principle: inference

order as defined by the FTS algorithm
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[linear weighted sum hfy, = (-0.7) + 2.6 = 19

Subset or ranked inputs up until a sum of their
pre-activation terms pushes a node over a saturation

threshold

hf, = tanh(1.9) = 0.956
.

Saturation threshold reached with 2
out of 6 input features

¢ These 2 features are:

* Credit Age

e # Collections >=500

* Sum of pre-activation terms associated with features x and x; already reaches our saturation threshold

+ The remaining pre-activation terms, for example the negative-0.8 contribution coming from %, , is not included in calculation of

the activation valueaccording to the FTS principle. Some inpwiweight connections may even be completely masked to simplify a
network’s structure if they are found to never lead to saturation.
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First-to - Saturate (FTS) Principle: network training and creation of interpretable hidden nodes
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Sparsely connected network trained with the FTS principle

[0, * hidden node at index O,
(1,[37,100,81,22,88,120,34]),
(2,[119,14,56,23,56,77,23)),
(3,[113,44,136,23,48,66,44)),
(4,[116,38,31,119,35,91,111]),
(5,[117,76,31,14,67,78,65])),
(6,[121,56,7,138,12,24,77)),
(7,[41,100,83,99,144,108]),
(8,[114,129,107,52,100,104),
O,[
(10,[69,14,56,62,120,105]),
(11,[119,44,31,37,76,44,12)),
(12,[136,4,21,117,80,130, 1)),
(13,[83,14,0,11,53,108,22]),
(14,[123,100,32,89,98,90])]




First-to - Saturate (FTS) Principle: a different take on saturation

[saturation simply means filling a thing or a place with “something” to an extent where there is enough of that "something” and}

more of that “something” would have no additional effect on that thing or that place ...

What saturates Krzysztof's level of endorphins/ what makes Krzysztof happy while running?

« Location (by the beach,around a lake,in a canyon). 3 factors (and their combinations) to

- Time of the day (early morning). - put Krzysztof in one of the happiness
« Style of running (progression run, intervals). relatgd saturation MODES while
running.
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1. Neural networks are highly predictive but inherently unexplainable.

2. Hidden layer(s) is a key predictive component of a neural network, but fully
understating its properties and typically dense connections is very challenging.

3. FICO’s latest invention tackles the problem of explainability with two key
features: a novel first -to-saturate principle and a
construction of interpretable hidden nodes.

THANK YOU!

krzysztofnalborski@fico.com
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